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Abstract
We assume that both the concurrence Cr of a two-rebits state and the concurrence Cq of the
usual two-qubits states are represented by hermitian operators (observables). We calculate
the respective uncertainty �Cr and the uncertainty �Cq measured both as the standard devi-
ation . We make the strictly mathematical assumption that there exists a canonical conjugate
variable (called ξ ) to the concurrence (C) such that both quantities satisfy a Robertson’s [1]
uncertainty inequality of the form (�A)2(�B)2 > | 1

2 〈[A, B]〉|2. From such inequality we
impose bounds for both uncertainties �ξ r and �ξq.
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Entanglement distinguishes substantially quantum mechanics from classical mechanics
[2]. Quantum entanglement plays a key role in superdense coding [3], quantum teleporta-
tion [4], and quantum information [5–8]. For a two qubits system (in pure and mixed states),
entanglement has been intensively studied in the past [9–13]. Concurrence can be consid-
ered as a measure of entanglement of a two-qubits state [9]. In the present work it is studied
the uncertainty in the concurrence of both two-rebits and two qubits. In the literature it has
not been considered uncertainty for a hypothetical conjugate variable to the concurrence
[14, 15].

For quantum mechanics defined over vector real spaces the simplest state is the rebit
state which is defined as

|η〉 = a0|0〉 + a1|1〉, (1)

where ai (i = 0, 1) are real numbers such that a2
0 + a2

1 = 1 and {|0〉, |1〉} are the clas-
sical bits. It is worth mentioning that for an arbitrary two-rebits system in Ref. [16] it was
found an expression for the entanglement of formation. Pure states of two-rebits systems
are described by 9 quantities. On the other hand, the usual one-qubit state is defined as

|ψ〉 = c0|0〉 + c1|1〉, (2)
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where ci (i = 0, 1) are a complex numbers such that |c0|2 + |c1|2 = 1 and {|0〉, |1〉}
are the basic qubits. By the way, the corresponding space of for a two-qubits state is 15-
dimensional.

In the present work we calculate the uncertainty of the concurrence �C associated to a
pure both two-rebits and two-qubits states. For the above we assume that the concurrence
is represented by a hermitian operator (observable). Furthermore, we make a strict mathe-
matical assumption that there exists a hermitian canonical conjugate variable, denoted by ξ ,
such that this satisfies a Robertson’s uncertainty relation [1] of the form

�C�ξ ≥ 1

2
|〈[C, ξ ]〉| = 1

2
. (3)

Let us observe that the above equation might indicate the existence of a hidden ’uncertainty
principle’ that would involve the concurrence C and a hypothetical complementary quantity
ξ ( � = 1).

For a two qubits system, entanglement is an associated intrinsically quantum quantity.
This has been very well studied in the past. It is well known that concurrence of a two-qubit
system is a good measure of the entanglement of formation Eq(ρ) [9] which is defined as

Eq [ρ] = h

⎛
⎜⎝

1 +
√

1 − C2
q

2

⎞
⎟⎠ , (4)

wheres
h(x) = −x log2 x − (1 − x) log2(1 − x). (5)

The concurrence for a pure two-qubits states is given by

Cq = max(0, λ1 − λ2 − λ3 − λ4), (6)

being λi, (i = 1, ..., 4) the square root in decreasing order of the eigenvalues of the matrix
ρρ̃, with

ρ̃ = (σ y ⊗ σy)ρ
∗(σ y ⊗ σy). (7)

For a two-qubits system the states become less entangled as the degree of mixtures
increases. Here restrict ourselves to a pure two-qubit states.

For a two-rebits system in Ref. [16] it was found a formula for the entanglement of
formation of two-rebits state which is given by

E[ρr ] = h

(
1 + √

1 − C2
r

2

)
, (8)

where
h(x) = −x log2 x − (1 − x) log2(1 − x). (9)

The above expressions are identical to the case of two-qubits except that the concurrence of
a two-rebits is

C[ρr ] = |tr(ρrσ y ⊗ σy)|. (10)

For a two-rebits state the entanglement of formation is the expectation value of one single
observable σ y ⊗ σ y A pure two-rebits state can be writen as

|	r 〉 =
4∑

i=1

ai |φi〉, (11)
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where we have used decimal notation, ai are real numbers such that

4∑
i=1

a2
i = 1, ai ∈ R. (12)

The states |φi〉 are eigenstates of the operator σ y ⊗ σ y. In Ref. [17] it was found an analyt-
ical expression for the probability density P(C2

r ) of finding a pure two-rebits state with a
squared concurrence C2

r . This has the form

P(C2
r ) = 1

2
√

C2
r

. (13)

The above expression has a strong divergence at C2
r = 0. The domain of (13) is 0 ≤

C2
r ≤ 1. Concerning to a pure two-qubit state, the distribution of probability has been found

analytically in [18] and it is

P(C2
q ) = 3

2

√
1 − C2

q . (14)

We note that the densities of probability (13) and (14) for two-rebits and two-qubits respec-
tively are even functions of the concurrences. That is, they admit negative values of the
concurrences, that is, P((−Cr)

2) = P(C2
r ) and P((−Cq)2) = P(C2

q ). A negative con-
currence has a non trivial interpretation. By the way, the discovery that quantum knowledge
can be negative was made by Horodecki-Oppenheim-Winter [19]. They argue that in the
quantum world there are things we just cannot know. For instance, we cannot know both the
position (energy) and momentum (time) of a microscopic quantum system.

The uncertainty of a variable X is defined as its standard deviation, that is

�X =
√

< X2 > − < X >2, (15)

where the average value of a function f(X) is

< f (X) >=
∫ 1

0
f (X)P (X)dX, (16)

being P(X) the distribution of probability of the variable X.
– Uncertainty for the concurrence of a two-rebits states (�Cr)

Rebits are a powerful tool for Quantum Information Processing. For instance in Ref. [20]
it was concluded that rebits do not affect universality for quantum computation. Rebits may
also be defined as a real density matrices of n two-level systems.

By using (13) it is possible to define the expectation value of Cr as

< Cr > :=
∫ 1

0

√
C2

r P (C2
r )d(C2

r )

=
∫ 1

0

√
C2

r

1

2
√

C2
r

d(C2
r )

= 1

2
. (17)
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The respective expectation value of C2
r is

< C2
r > =

∫ 1

0
C2

r P (C2
r )d(C2

r )

=
∫ 1

0
C2

r

1

2
√

C2
r

d(C2
r )

= 1

3
. (18)

Substituting (17) and (18) in (15) the uncertainty for the concurrence for a pure two-rebits
state is

�Cr =
√

12

12
= 0.29. (19)

If we assume that the uncertainty �Cr satisfies an uncertainty principle such as (3) then the
uncertainty of its complementary variable ξ r satisfies

�ξr ≥
√

12

2
= 1.7. (20)

To interpret ξ r is a nontrivial task. In fact, this is a challenge for Quantum Information
Theory.

– Uncertainty for the concurrence of a two-qubits states (�Cq)

By using (14) the expectation value of Cq is

< Cq > :=
∫ 1

0

√
C2

qP (C2
q )d(C2

q )

= 3π

16
. (21)

The respective expectation value of C2
q is

< C2
q > =

∫ 1

0
C2

qP (C2
q )d(C2

q )

= 2

5
. (22)

Substituting (21) and (22) in (15) the uncertainty for the concurrence for a pure two-qubits
state is

�Cq =
√

2

5
− 9π2

256
= 0.23 (23)

If we assume that there exists a hidden uncertainty principle as (3), the uncertainty in the
respective complementary variable ξq is

�ξq ≥ 1

2

√
2

5
− 9π2

256

= 2.2. (24)
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The interpretation of the variable ξq would remain also as an open question for Quantum
Information Science.

We have calculated the uncertainty of the concurrence associated to a pure two-rebits
state and also to a pure two-qubits state. Both concurrences have a non zero value which
means that their measure cannot be done with precision. This confirms that they are a quan-
tum mechanics quantities that cannot be known with absolute certainty. We observe that
both uncertainties have a similar values i.e. �Cr = 0.29 and �Cq = 0.23. To assume from
the point of view strictly mathematical that there exists a complementary quantity ξ to the
concurrence C in such a way that both variables satisfy an uncertainty principle (3) is a mere
conjecture that requires many efforts and intense search. By choosing a system of units
where � = 1 it is concluded that the complementary variable ξ of (3) is dimensionless. A
future challenge is to identify the hermitian operator ξ with a physical quantity.
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